LogoLogo
  • Overview
    • SEDA Overview
      • SEDA Primer for Key Features
        • SEDA’s Intent-Centric Framework
        • Modular Design Benefits
        • Programmable Tooling and Permissionless Development
        • Fast Settlement & Horizontally Scalable
        • Fork-less Upgrades
      • RWAs, Price Feeds, AI and More
        • Custom Data Feeds
      • SEDA Token Primer
        • Network Utilization
        • Network Participation & Chain Security
        • Network Governance
      • Introducing SEDA's Flagship Product - The IVM
        • 🌉Intro to Interop 3.0 & Emerging Verification Markets
        • Programmable Modules
        • Triggering A Verification Data Request With An IVM
        • SEDA IVM Security
        • An IVM Summary
    • SEDA Network Architecture
      • Walking Through SEDA’s Architectural Features
      • The PoS SEDA Chain
      • Oracle Programs
      • The Overlay Network
      • Decentralized Solver Network
      • SEDA’s Prover Contract
  • For Developers
    • 📈Data Requests
      • ❓What is a Data Request?
      • 🔃Data Request Life Cycle
    • 💾Building an Oracle Program
      • Price Feed Example
        • 👋Getting Started: Price Feed
        • 🧪Testing Your Oracle Program
        • 🚀Deploying Your Oracle Program
      • 🌐Fetching Open Data
      • 🔐Advanced: API-key Gated Data
    • ⚡Access Data from Any Network
      • 🔎Access from EVM Networks
        • 🔧Using SEDA in a Contract
        • 🚀Contract Deployment
      • 🔜Access from other Networks
      • 🔜Advanced: Run your own Solver
    • 🏗️Deployments
    • 👽Interoperability Verification Module (IVM)
      • 🛸Interop Verification Module for Message-Based Bridge Protocols
      • Powering Intents and Chain Abstraction with SEDA
  • For Users
    • ⭐Getting Started
      • 🏦Wallet Overview
      • ⏬Installing Cosmos Hub on Ledger
      • ⛓️Adding SEDA Chain to Keplr
      • 🌌Delegating your SEDA
        • 📨Selecting a Validator
        • 📡Delegating to a Validator
    • 👐Tools and Dashboards
      • 🌐SEDA Explorers and Dashboards
      • 🔭Third-party Explorers
      • 📶Public RPCs + APIs
    • 🔵SEDA Token Info
      • 📈Token Charts and Tracking
      • 📊Exchanges
      • 〰️SEDA Distribution Schedule
  • For Data Providers
    • Data Proxy
      • ℹ️Introduction to Data Proxy
      • 💻System Requirements
      • 🔢Operating and Running a Data Proxy
      • 🔐Advanced: API-key Gated Data
  • For Node Operators
    • 📶SEDA Chain Guide and Requirements
      • 🎬Installation and System Requirements
      • 👟Operating and Running a Node
      • 🔗Linking to an External Node
      • 🏗️Validator Onboarding
      • 🔑SEDA Keys
      • 📸Joining Testnet Using Snapshot
      • 🤝Joining Testnet Using State Sync
  • Resources
    • 🛡️Audits
      • Trail of Bits Audit Report Repo Link - March 2024
      • Sherlock Audit of SEDA Network Full Feature Launch - April 2025
  • Legal
    • Privacy Policy
    • Terms
Powered by GitBook
On this page
  1. Overview
  2. SEDA Overview
  3. SEDA Primer for Key Features

SEDA’s Intent-Centric Framework

Omni-chain Data Transmission For Any Network

PreviousSEDA Primer for Key FeaturesNextModular Design Benefits

Last updated 2 months ago

Traditional oracle models were built to serve a blockchain landscape consisting of relatively few networks. The main use case for on-chain apps were DeFi, and oracles were designed to meet the needs of that time. In the current blockchain landscape, with hundreds of current chains and thousands more set to deploy, new networks require day-one access to oracle feeds.

Traditional oracles are built on network-centric architecture, which is designed to be compatible with the specific blockchain to which it is deployed. When an oracle wants to integrate with a new network, it is required to redeploy its entire infrastructure stack. With current demand rates, traditional oracles may face integration delays of anywhere between 3 - 9 months, depending on what architecture they use.

SEDA’s intent-centric framework mitigates the need for infrastructure redeployments by leveraging a decentralized network of Solvers that monitor SEDA Prover Contracts for inbound data requests. Solvers manage the cost of a data request by accepting any of their selected currencies. Solvers then relay the data request to the SEDA Chain, covering the value of the data request in SEDA Tokens. This is explained further in .

The initial integration of the SEDA Network and the first access to any data is made up of a Prover Contract deployable to any network, decentralized Solvers monitoring the network, and access to or initial deployment of an Oracle Program.

SEDA Token Primer